
deNEUF, KITCHIN. WALTERS. ANDERSON. FOLKMAN.DICKOW. MUNDT. GEISEL. CADY. COOKSON. WILLIAMS.MILLER

rom the beginning the mind of man has ever been concerned with the problem of devising symbols or signs which could be used in conveying thoughts and irleas to the minds of other men．History tell us that in all ages and in all lands the people of the period had their own peculiar methods of com－ munication－－in the less civilized countries by means of signs manifested by gesticulation of the hands and arms，and among more lighly developed peoples by means of inscribed marks or symbols．
In the writings of Homer＂the lambent flame which shone round the head of Achilles＂is compared to the signals made in besieged cities by clouds of smoke in the daytime，and by bright fires at night－ signals which were enployed in calling for assist－ ance and in notifying friendly cities of the in－ minence of hostile attack．

Signaling－systems enploying alternately obscured and exposed lighted torches were used by Polybius in the Punic war，B．C．264．Flag and semaphore signaling systems were employed by Washington＇s army in the War of the Revolution；and before and immediately after that time many ingenious signal－ ing－systems were proposed which consisted mainly of symbols regresenting certain prearranged groups of words．

The necessity for a universal signaling－alphabet having a symbol for each of the letters that form the elements of written language had been recognized from very early times．
（2，VTM M

The Francis Bacon alphabet of 1605 A．1）．is the first successful atterrpt of which there is record，having as its basis＂dimension＂and＂duration＂of the cle－ ments of the signal．It was a far cry，however， from this early alphabet to the scientific arrange－ ment adopted by Morse in the year 1844.

It would task the comprehension of a seer to grasp the wealth of significance contained in those three simple words，＂the Morse Alphabet．＂Today the language of the wirc，the language of the rail，the universal language of the sea are made up of the mystic symbols which comprise the telegraph al－ phabet．

In the minds of many the idea prevails that the first telegraph code was devised by Professor S．F． B．Morse，the inventor of the electromagnetic tele－ graph，with the aid of his assistant，Alfred Vail． It is true that both Morse and Vail performed a vast amount of painstaking labor in devising a sat－ isfactory signaling－code for the Morse telegraph systen introduced in the year 1844；but it has since been learned that had Morse known of the work along the same lines done by prior scientists he would have found ready at hand an alphabet answer－ ing his requirements better than the first code ar－ rangement which he employed．
In the year 1605 Francis Bacon，in his＂Advancement of Learning，＂discussing cryptography，submits a form of biliteral alphabet which may be made up of all things which are capable of two differences．

Fmploying dots and dashes in the conmosition of this alphabet，the letters were designated as follows：

BACON＇S CODE OF I605

A		I	－	R	
B		K	－．．－	S	
C	．．－－	L	－・ー・	T	
D	．．．－－	M	－．－－	v	
E		N	－－．	W	
F	．．－＊	0	－－－	X	－
C		P	－－	Y	
H	＊－－	Q	－ーーーー	\％	

The omission of the letters J and U is due to the fact that these letters of the English alphaloct hiaj not at that date been differentiated fron I and V ．

REE＇S CODE

In a cyclopedia published by Dr．Abrahan Rees in 1809 there appears an Luphabet in which the first nine letters are represented identically witf Ba－ con＇s code．In the Rees alphabet the inclusion of the letters J and U necessitated a shift forwadd of the signs．With the exception of the letters X, Y ，and Z ，this alphabet is the same as that of Bacon．

WORLD CODES
 CONTINENTAL CODE SIGNALS

The numerals used with the Bain alphabet were：

AUSTRO－GERMANIC CODE OF 1854

The alphabet and system of notating nunserals and punctuation，as employed in European countries，is given herewith：

CONTINENTAL（INTERNATIONAL）CODE

The Austro－Germanic alphabet was first compiled at the telegraph conference held in Berlin，Germany， in 1851．This alphabet is still in use and is known variously as the Continental，international or universal code．It is employed on European Morse lines，and is used almost universally in ra－ diotelegraphic service as well as in submarine cable semice throughout the world．

In addition to the symbols shown as constituting the Austro－Germanie cede，the Continentill alpabet of the present day includes the following signals：

－Fraction line	－．．．．
－Hyphen	＊＊••
／Shilling	－•＊
－Decimal point	－ーー
＂＂＂\％Quotation	－－••
End of Quotation	－．
$\%$ Percent	－ー・・ーーー
Italics or underline	－－．．－－．
Paragraph－－－	－－－－－－
（）Parenthesis	－・ーー・•
E（French）	－
N＇（Spanish）	－－－
$\widehat{\Lambda}$（Spanish－Scandinavian）	－－－－－

The Continental alphabet as made up in 1851 was supposed to embody the best reatures of all then existing telegraph alphabets．As an indication of how the various alphabets were picked over to form the international code it may be seen that the symbols for $\mathrm{F}, \mathrm{H}, \mathrm{O}$ ，and P were taken from Stein－ hill＇s alphabet；the letter X and the numerals 1 ， 2．3．4，and 5 from the Bain alphabet，while the numerals $6,7,8$ ，and 9 also were taken from the Bain alphabet，but were arranged in reverse order． The letters C，F，L，and R were taken from an ob－ solete pamphlet used in Germany and known as Gerke＇s while twelve of the remaining letters were taken from the Anerican Morse alphabet of 1844.
－perators in submarine cable service use abbrevi－ ated symbols for the numerals of the Continental cede，as shown in the subjoined table：

UNITED STATES NAVY CODE

Until a few years age when the continental code was adopted as standard in the radio service of the United States army aud navy the navy had a code of its own，as follows：

A－－	J •－－－	s－－－
в $-\cdots-$	к－－－	T－
C．－－	L－－－	U ．．－
n－－－	м・ーー・	V．－－－
F．－	N \cdot	W．．－
F－ーー・	0 －－	X－－－－
$\mathrm{G}-\mathrm{m}$	P・ー・ー	Y ．
H・ーー	Q •－．．	Z
I－	R －．	

deed the deadlock is such at present that compro－ mise alphabets are being proposed．

In August，1914，Mr．W．P．Phillips proposed the following code as a substitute for the American Morse，believing that its adeption in America would not violate the prevailing sentiment attached to the Morse alphabet and that its make－up success－ fully disposes of the olojections to the spaced dot letters of the Morse code－C, O, R, Y ，and Z ．

PHILLIP＇S PROPOSED CODE

A	Ј ー・ー・	S	\cdots
B－．．．	к－．－	T	－
C	L …－	U	
D－．	M－	v	
E	N－－	W	
F＊－	0	x	
¢－－－	P	Y	
H ．．．．	Q－－－－	2	
－	R－－＊		And

PRINTING TELEGRAPH CODE

Mest medern printing－telegraplt systems employ a code having symiols made up of five elements or current impulses，each letter，figure，and punctu－ ation－mark requiring the same amount of line－time for transmission．It is net intended that these signals shall be intelligible on a Morse sounder， as the alternate pesitive and negative impulses transmitted from the sending end are required only to operate type－printing mechanism at the receiv－ ing end．

In the three following alphabets the letter P rep－ resents a positive impulse and the letter N a neg－ ative impulse，each impulse having unit duration：
＂PORTS O CALL＂Nol．4）

MERKRUM CODE

ppnnn	L npmin	W ppnnp
mnpnp	M nnnpm	X prpnp
nпppp	N minm	Y nnnnp
pppnn	0 n ${ }^{1}$	\％nppmp
pnppn	1＇nnppp	nnımn
npmpp	Q panpp	Space pppup
ppmpp	1 R nпppn	Figure nppp
pronn	S npmpn	Release pppp
pronn	T ppmpn	Back ppppn
J prunp	U mmpn	Line nppp
K npmnp	V pnppp	

In both the Morkrum and W．U．multiplex alphabets the figures and punctuations are made by means of an upper－case shift，employing symbels which are duplicaves of those used in forming some of the letters．

BUCKINGHAM OR BARCLAY CODE

A	－	J	－－－	S		
B	－－．	K	－－－	T	－	
C	－•－	L	＊－－	U	－	－
D	－＊＊	M	ーー・•	V		－
E	－－	N	＊－－	W		
F	－••	0	．	X		
G		P	－	Y	－	－
H	－	－	－－	2		
I	－	R	－		ce	

Type shift \rightarrow •
Paper feed - －
Car．ret．－－－
As in the case of the other printer alphalsets； punctuations，figures，and special characters are made by means of the type－shift key．By this means the same symbol serves for C and colon，Q and $1: R$ and $4, T$ and 5 ，et cetera．

The symbols shown above are those composing the Barclay arrangement of the Buckingham alpliabet． In the original Buckingham alphabet the symbol for V was－－．and for X ．．－

TELEPOST CODE

The alphabet used in the operation of Delaney＇s chemical automatic system of telegraphy is the American Morse，or that hereinbefore described as the Morse alphabet of 1844.

A	ppnnn
B	pnnpp
C npppn	
D	pnnpn
E	pnnnn
F	pnppn
G npmpp	
I	nnpnp
I nppnn	
J ppnpn	
K ppppn	
L npnnp	
M nnppp	
N nnppn	
O nnnpp	
P nppnp	
Q	pppnp
R npnpn	
S pnpnn	

WESTERN UNION MULITILEX CODE

T mmnn
U pppra
\vee npppp
W ppinp
X pnppp
Y pnpap
2 pnnnn
Car．ret．nunpn Line feed npnns Let．shift ppppp Fig．shift ppnpp Space nnpnn

Ph he word "Ode" is not really correct. The follown ing isn't going to be poetry in any sense.

Telecommunications is always fascinating--especially the matter of the use of codes. Of course, we all use a variety of codes to communicate our thoughts to others. For instance, a writing instrument comprised of a stick of graphite we know in English as a "pencil" is known as a "lapiz" by the Spanish speaking; a "bleistift" in German, a "crayon" in French, an "empitsu" in Japanese, a "karandash" in Russian, and to the Italians a "matita," etc. Exactly the same iten and thought is expressed but a different "code signal" is employed for each languate. Then there are all sorts of variations orally -- a Brooklynite will usually pronouce Long Island as "lon-guyland." South Carolinian may refer to a "poke" - known to the northerners as a "bag" or "sack." Some oral "codes ${ }^{14}$ utilize varieus inflections in a single word to convey different meanings, such as that used in the Chinese languate. Of course, even in English we do this - every mother knows that a child addressing her as "mother" may use half a dezen inflections - conveying thoughts or feelings of anger, humor, impatience, fear, sadness, etc. In the written word many languages use additional "codes" t indicate a change in pronounciation, such as the "umlant" over the letter "o" in German which flattens the somd, and the "tilda" over a Spanish "n" t* indicate it has a "nyeh" sound.

Well, from a telecomnunications standpoint, in 1837 Morse and Vail collaborated on a telegraphic code made up of dots and dashes. But, it really was not very well thought out . . . Seven years later they revised it giving the most commonly used letters the shortest signals. Then reception was carried ont by visually reading an inked strip of paper on which appeared the dots and dashes. Interestingly cnough some years passed before operators discovered they conld decipher the signals mach faster by ear by listening to the selenoid operating the pen. Thus the "sounder" was borm. But in Europe telegraph systems developed with the use of the English "needle telegraph" invented by Cooke and Wheatstone. The existing Morse code with some of its letters (C, 0, R. Y. Z) having spacing within the letters themselves was not suitable as a code for this device. Just who in Europe develeped the "International Code" (still used today) seems lost in history but all telegraphic communications utside America employed it*, including "wireless" when it came into being." The American Morse code was as distinctly American as apple pie and baseball and it continued to be used on all telegraph lines (WU, Postal, Railroads Press, etc.) until the gradual replacenent of Morse
by the teleprinter. Some non-Furopean ceuntries developed special cedes for their telegraph systems to accommodate their own alphabets--notably Russian, Japanese, Arabic, Greek and Turkish. With the old American Morse code and its spacing within letters, sloppy senders and/or receivers sonetimes produced weird messages for the addresses. One fameus text was received by the addressee as "COG HOG TO ROG JAGS IS NOT $100^{" 1}$ instead of "COME, HOME TO ROME JOE IS NOT WEIL. ${ }^{\text {H }}$ (Credit to Dick Hilferty.)
> *Perhaps Anerican Morse Code should really be termed "North American" since it was also used on lines in Canada and Mexice growing as extensions circuits from the U.S.

Then there was the old Morse "Number Code" to conserve time and space. Each represented not just a word but a complete standardized sentence. Not all remained popular but the following were in general use some 40 years ago:

4 - Where was I? (Used after an interruption or when the sender lost his place.)
9 - Wire Chief Calling. Drop everything and do what I tell you.
13 - Do you understand?
17 - The following is for all stations on the line. 25 - I'm busy now; call me later.
30 - That's all for today (or tonight). *
73 - My best regards to you. *
95 - The following is very urgent.

Thanks to Leslie Funston - 1903-V
*Contrary to views in the past as to how 30 and 73 originated some old timers claim that the eld number code gave birth to them.

Old Morse perators, when the receivers wrote in a fast scrawl, ran at about 22 words per minute. Speed increased considerably when the receiving operators began using typewriters, known only as "mills" in those days. The telegraphers' handwriting was very distinctive - young men imitated the old. It was called "telegrapher's script." 'Thomas A. Edison's famous signature was a classical example.

ODE TO CODE-Don de Neuf

After the introduction of the typewriter in telegraphy 1 Walter P. Phillips, who headed the Associated Press Washington Bureair from 1879 to 1882 devised a set of abbreviations for speeding up teleg. raphy - especially press messages - which immediately became known as "The Phillips Code." APC stood for apprerciate. PLS for Please. XNL was constitutional, $X X N$ cross-examination, etce etc. POX stood for police. There some comical blunders were committed when operators allowed their minds to wander, ne AP operator in Florida turned out a bulletin which read "Small police had broken out in one part of the state."

International telecommunications introduced a number of different operating codes. There were five Letter codes using pronouncable words such as WaJIV for "Give better attention;" SIzIZ for "second re. muest;" SOcUR for "third request," etc. GUHOR meant "You are fading badly." Then there were a whole set of "Z" signals for operating purposes "Zut" for "How are receiving conditions," "Zok" for "Receiving 0K," "ZLS" for "Lightning storm here." ZSF meant "send faster" of course, and ZSS "send slower." Although almost all transmission was by means of punched paper tape, reception was either by ear or visually by undulator tape, depending upon the quality of received signals. Comtrary to the much earlier development where operators found they could copy by ear faster than by deciphering: the inked tape, such was not the case on undulator tape as against anural reception. Highly skilled operators ceula copy visually, on a typewriter of course, undulator tape at speeds of 70 wpm wiluen the language was plain text (not five or ten letter "code ${ }^{\pi)}$. *

Here again was another set of codes used by businessmen to reduce the number of words in an international telegram, because there was a special rate per word for recognized commercial business five letter codes, wihich was less than plaill English. For exarple one code book carries the 5 letters EPUSD which meant "We can not deliver the exact material you request at the present time but offer to you the following substitution."
*Undulator tape employed a continnous inked line which moved upward with the presence of a signal forming visible dots and dashes on the top. This was quite different from "cable tape" recerders used on underseas cable circuits . . here the "no signal" condition kept the pen in the center or the tape. + DC current was used for dots which cansed the pen to rise above the center line, whereas for dashes a negative DC current pulled the pen below the line. Visually it was quite a different "language."

The Citizens Band reveals all kinds of weird distortions of established signal codes. A standard police code "10-4" means "message received 0 K ." You'll hear a CB perator saying, "That's a big 10-4" when he presumably means "I agree with you*" The funniest to me are the nes who sign off with "threes and eights to you" - presumably derived from 75 and 88 , in some fashion but I'll bet few of them know what 88 used to stand for! ! !
--D. K_ deNeuf
Add the following(insert per legend as marked):
but it was adopted at the Austro-German Telegramh Conference held in Berlin in 1851.

- An important increase in telegraphy spreed came along in 1904 - when the semi-automatic sending machine or "bug" became an important. tool to the tel egrapher. The combination of the typewriter, the Phillips Code, and the bug inereased manusl telegrapinic speeds to 50 or more words per minute.
(Corrections by Author Don deNeuf)

Author and contributor DONALD K. de NEUF, SOWP Charter Member 717-P has hiad a very distingui shed career in Tele-communications since taking his first assignment on the Matson Liner SS LURLINE/WML back in 1925. Following a career at sea on some of our larger ships, he held many important assignments shoreside, becoming President of PAESS WIRELESS INC. He has been diecoriated by foreign governments for his humanitarlan efforts. He has also received many awards and citations for his outstanding ability and knowledige of the communications field and ability to 'get things done'.

He was one of the early holders of the coveted "pink" Ticket (Number Four) arte one of the few (if any) Americans who wene ever issued an operators license by the Cuban Govemment.

The above photograph shows Don, circa 1925 on duty handling a 'hot' job on the SS MA TSONIA/WMP on the run from S.F. to Homolulu. Traffic was always heavy on WMP and WMA (SS Maui - Sister Ship). We served as primary relay stations collecting traffic for RCA (KPH and KSE in those days when competition was very keen. 'Ye Ed' should know as he preceded Don by five years at the key WMP. We are sure our mernbers will enjoy these fine contributions by "Don" from his store of knowledge about our favorite subject--Communications

